Плазменные генераторы

Плазменные генераторы «VISOM-R» и «VISOM-А» являются разновидностью аппаратов, использующих метод «холодной плазмы» и относятся к физиотерапевтическому медицинскому оборудованию, предназначенному для устранения паразитарных, грибковых, бактериальных и вирусных инфекций, обработки онкологических образований, санации тела, обработки ран, кожных повреждений и высыпаний.

Научное обоснование

Ознакомьтесь с современным взглядом научного сообщества

Приборы генерируют электромагнитное поле средних частот, естественного безвредного спектра от 1Гц до 990Гц.
Мощность приборов (от 30 до 225Вт) не позволяет обрабатывать большие помещения, однако способно эффективно подавлять большинство известных вирусов, бактерий, грибков и паразитов в радиусе от 1 до 3 метров.
Разработаны международной группой ученых, на основании многолетних научных исследований в области частотно-волнового воздействия на органические патогены:

Германия

США

Великобритания

Аппараты сертифицированы в Украине как медицинское физиотерапевтическое оборудование класс 2А

Научное обоснование

Выдержки из публикаций:

«BACTERICIDAL ACTION OF COLD ATMOSPHERIC PLASMA IN SOLUTION»

V Boxhammer1,4, G E Morfill1, J R Jokipii2, T Shimizu1, T Klämpfl1, Y-F Li1, J Köritzer1, J Schlegel3 and J L Zimmermann1

Published 29, New Journal of Physics, Volume 14, November 2012

https://iopscience.iop.org/article/10.1088/1367-2630/14/11/113042

«ХОЛОДНАЯ АТМОСФЕРНАЯ ПЛАЗМА» (cold atmospheric plasma, «САР») является одним из наиболее перспективных инструментов для профилактики инфекционных заболеваний и внутрибольничных инфекций.

Известно, что САР инактивируют широкий спектр микроорганизмов, таких как бактерии, грибы, биопленки, вирусы и споры [ 1 — 6 ]. Очень важным моментом является то, что CAP также способны инактивировать бактерии, устойчивые к антибиотикам, таким как мультирезистентный золотистый стафилококк (MRSA) [ 7 , 8 ].

Даже Deinococcus radiodurans, которые устойчивы к ультрафиолетовому (УФ) излучению, окислению и высыханию, что делает его «самой жесткой бактерией в мире» (как указано в Книге рекордов Гиннеса) могут быть инактивированы в течение нескольких секунд [ 9].

Более того, последние результаты показывают, что микроорганизмы также могут быть инактивированы сквозь различные ткани (текстиль), что открывает еще больше областей применения [10].

Использование CAP в медицине и здравоохранении в качестве дезинфицирующего средства решит многие проблемы — от раздраженной кожи из-за мытья и дезинфекции рук, стерилизации хирургического оборудования до профилактики внутрибольничных инфекций и распространения устойчивых микроорганизмов.

Большое количество исследований, выполненных в последние годы, показали, что все протестированные патогены могут быть легко инактивированы CAP в небольших временных интервалах (от нескольких секунд до минут) [ 1 — 7 , 31 ].»

 

«PLASMA MEDICINE: AN INTRODUCTORY REVIEW»

M G Kong1, G Kroesen2, G Morfill3,5, T Nosenko3,4, T Shimizu3, J van Dijk2 and J L Zimmermann3,4
Published 26 November 2009 • IOP Publishing and Deutsche Physikalische Gesellschaft

«Устройством для микроволновой плазмы, (разработано под эгидой Института физики им. Макса Планка) обрабатывали мультирезистентный стафилококк аурис (MRSA) плазмой в течение 2 минут, а затем инкубировали в течение 24 часов. Там, где была применена плазма, практически не обнаружено выживших бактерий (определяемых как единичные колониеобразующие единицы), что указывает на снижение бактериальной нагрузки на 99,9999%.

Эти результаты свидетельствуют о том, что САР, безусловно, способны дезактивировать ключевые микробные загрязнители при внутрибольничной инфекции»

Википедия о «PLASMA MEDICINE»

Пресс-релиз Института Плазменной физики им. Макса Планка

Научные источники:

WOUND

Prospective RCT to validate the interval of cold atmospheric plasma treatment for reduction of bacterial load, wound area and pain in patients with chronic wounds,
M. Moelleken, EWMA 2019 (oral presentation)

The Gas Plasma device: a novel therapy in treating non-resolving infected diabetic foot and leg ulcers,
M. Pierides, A. Thant, N. Fleming, M. Gray, P. Grannon, EWMA 2019 conference (e-poster)

Adtec Cold Plasma treatment to assist in treating diabetic foot with multiresistant infection,
A. Thant, M.Gray, P. Grannon, N. Fleming, M. Pierides, ISDF 2019 conference (poster presentation)

Does using a gas plasma medical device change bacterial composition of diabetic foot ulcers and reduce the need for antibiotics?
N. Fleming, P. Grannon, M. Gray, M. Pierides, BSAC Spring Conference 2019 (poster presentation)

Selected Settings of Clinical Plasma Treatment, Urayama et al, Comprehensive Clinical Plasma Medicine,
2018 Springer International Book pages 213-251.

Prospective, randomized and placebo-controlled clinical trial (RCT) for the validation of treatment intervals of chronic wounds with cold atmospheric plasma,
Moelleken, Deutscher Wundkongress 2018 (oral presentation).

Plasma therapy – Once a week enough? Prospective RCT to validate the interval of plasma treatment for reduction of wound area, bacterial load and pain, Jockenhöfer F., EWMA 2018 (oral presentation)

A proof of concept evaluation of the efficacy of non-thermal gas plasma in the treatment of diabetic foot ulcers that are stalled by sub clinical wound infection, McCardle J., Haycocks S., Chadwick P., EWMA 2018 (poster presentation)

Use of cold atmospheric plasma treatment in a chronic burn wound,
Kwang CL, Wounds UK 2015 (poster presentation)

Successful and Safe Use of 2 Min Cold Atmospheric Argon Plasma in Chronic Wounds: Results of A Randomized Controlled Trial.
Isbary, G., J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H-U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler and W. Stolz,. British Journal of Dermatology, 2012. 167(2): p. 404-10.

Cold Atmospheric Plasma (CAP) Changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.
Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li Y-F, Hubertus T, Morfill GE, Zimmermann JL, Bosserhoff A-K, Karrer S. PLOSONE Nov 2013, Vol 8 Issue 11e79325

Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of a retrospective in vivo randomized controlled study. Isbary G., Stolz W, Shimizu T, Monetti R, Bunk W, Schmidt SteriPlas Bibliography 2019-06-21 V12H-U, Morfill GE, Klaempfl TG, Steffes B, Thomas HM, Heinlin J, Karrer S, Landthaler M, Zimmermann JL Clinical Plasma Medicine 2013 Dec; 1(2):25-30

Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites.
Heinlin J, Zimmermann JL, Zeman F, Bunk W, Isbary G, Landthaler M, Maisch T, Monetti R, Morfill, GE, Shimizu T, Steinbauer J, Stolz W, Karrer S. Wound Repair Reg 2013

 

SURGICAL SITE INFECTION

Cold Atmospheric Plasma and advanced Negative Pressure Wound Treatment: Long term follow up of treated infected implants in cardiac surgery,
H. Rotering, EWMA 2019 (poster presentation)

Infected implant – complex wound treatment: Cold atmospheric plasma and advanced NPWT, H. Rotering, München Chirurgie DGCH 2019 (oral presentation)

Cold atmospheric plasma and advanced negative pressure wound treatment – First results of a tissue saving approach for deep surgical site infections,
H. Rotering, Muenster, S. Martens, Muenster, A. M. Dell’aquila, Muenster EACTS 2018 (Oral presentation)

Cold atmospheric plasma and advanced negative pressure wound treatment – New option for therapy refractory left ventricular assist device infections?
H. Rotering EACTS 2017 (Oral presentation)

Remove it or treat it – New technologies for complicated wounds,
Rotering H., EWMA 2018 (e-poster)

Cold Atmospheric Plasma: Treatment option for critical ill patients with an infected pacemaker pocket,
Rotering H., EWMA 2017, Amsterdam (poster presentation)

Cold Atmospheric Plasma- new options for infection control in wound management,
Rotering H., EWMA 2016, Bremen (oral presentation)

Cold Atmospheric Plasma- new treatment options for infected chronic implants, Rotering H., WUWHS 2016, Florence (oral presentation)

Cold Atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post operative ear infection.
Isbary G, Shimizu T, Zimmermann J, Hubertus T, Morfill G, Stolz W. New Microbes and New Infections (2013).

 

DERMATOLOGY

Efficacy of cold atmospheric plasma versus diclofenac 3% gel in patients with actinic keratoses/field cancerization: preliminary results of a prospective, randomized, rater-blinded study (ACTICAP), K. A. Salva, M. Wirtz, F. Koch, M. McGovern, D. Schadendorf, A. Roesch, EADV 2018 (poster presentation)

Actinic keratoses treated with cold atmospheric plasma,
M. Wirtz, MDI. Stoffels, MD; J. Dissemond, MD; D. Schadendorf, MD; A. Roesch, MD, J. Eur. Acad. Dermatol. Venereol. Online July 11,2017

Randomized placebo-controlled clinical trial showed cold atmospheric argon plasma relieved acute pain and accelerated healing in herpes zoster,
G. Isbary , T. Shimizu, J.L. Zimmermann, J. Heinlin, S. Al-Zaabi, M. Rechfeld, G.E. Morfill, S. Karrer, W. Stolz, Clinical Plasma Medicine, Volume 2, Issue 2, December 2014, Pages 50–55

Cold atmospheric plasma: A successful treatment of lesions in Hailey-Hailey disease, G. Isbary, G. Morfill, J. Zimmermann, T. Shimizu and W. Stolz, Archives of Dermatology 147(4):388-390 (2011)

Plasmamedizin in der Dermatologie,
S Karrer, S Arndt, Der Hautarzt 66(11) · September 2015 SteriPlas Bibliography 2019-06-21 V13

Plasma applications in medicine with a special focus on dermatology,
J. Heinlin, G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu, B. Steffes, T. Nosenko, J. L. Zimmermann and S. Karrer, J. Eur. Acad. Dermatol. Venereol. 25 (1), 1-11 (2011).

Plasma medicine: possible applications in dermatology,
J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu and S. Karrer, J. Dtsch. Dermatol. Ges. 8 (12), 968-976 (2010).

 

BIOFILM

The impact of non-thermal gas plasma on bacterial pathogens (planktonic and biofilm phenotype) in-vitro and in an animal model,
K. Cutting TVS UK 2017 (oral presentation)

Antibiofilm Activity demonstrated following treatment with a novel plasma device,
S. Westgate EWMA 2016 Bremen (poster presentation)

The impact of non-thermal gas plasma on bacterial pathogens (planktonic and biofilm phenotype) in-vitro and in an animal model,
K. Cutting EWMA 2016 Bremen (poster presentation))

Antibiofilm Activity demonstrated following treatment with a novel plasma device,
R. Booth, Wounds UK 2015 (poster presentation)

Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds,
S. A. Ermolaeva, A. F. Varfolomeev, M. Yu. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, I. I. Selezneva, T. Shimizu, E. V. Sysolyatina, I. A. Shaginyan, O. F. Petrov, E. I. Mayevsky, V. E. Fortov, G. E. Morfill, B. S. Naroditsky and A. L. Gintsburg, J. Med.Microbiol. 60, 75-83 (2011).

 

ANTIMICROBIAL PROPERTIES

The impact of argon gas plasma on bacterial pathogens in vitro and in an animal model,
K. Cutting, EWMA 2018 poster presentation.

Non-thermal gas plasma – mode of action and bioburden management,
Cutting K. Wounds UK, 2016 (poster presentation).

Characterization of Low-Temperature Microwave Plasma Treatment with and without UV Light for Disinfection,
Tetsuji Shimizu, Tetyana Nosenko, Gregor Eugen Morfill, Takehiko Sato, Hans-Ulrich Schmidt and Takuya Urayama, Plasma Process. Polym. 7, 288-293 (2010).

A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients,
G. Isbary, G. E. Morfill, H.-U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl and W. Stolz, British J. Dermatol. 163 (1), 78-82 (2010).

Characterization of Microwave Plasma Torch for Decontamination,
Tetsuji Shimizu, Bernd Steffes, René Pompl, Ferdinand Jamitzky, Wolfram Bunk, Katrin Ramrath, Matthias Georgi, Wilhelm Stolz, Hans-Ulrich Schmidt, Takuya Urayama, Shuitsu Fujii, Gregor Eugen Morfill, Plasma Process. Polym. 2008, 5, 577-582

The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging,
René Pompl,Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W. Stark, Takuya Urayama, Shuitsu Fujii and Gregor E. Morfill, New Journal of Physics 11 (2009) 115023 (11pp)

Non-thermal argon plasma is bactericidal for the intracellular bacterial pathogen Chlamydia trachomatis
Svetlana A. Ermolaeva, Elena V. Sysolyatina, Natalia I. Kolkova, Petr Bortsov, Amir I. Tuhvatulin, Mikhail M. Vasiliev,Andrey Y. Mukhachev,Oleg F. Petrov, Shimizu Tetsuji,Boris S. Naroditsky, Gregor E. Morfill, Vladimir E. SteriPlas Bibliography 2019-06-21 V14 Fortov,Anatoly I. Grigoriev, Nelly A. Zigangirova1 and Alexander L. Gintsburg, Journal of Medical Microbiology (2012), 61, 793–799

 

SAFETY & EFFICACY

Effects and safety of atmospheric low-temperature plasma on bacterial reduction in chronic wounds and wound size reduction: A systematic review and meta-analysis,
O. Assadian, K. J. Ousey, G. Daeschlein et al, Int Wound J. 2018; 1-9.

Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing,
Arndt et al, Clinical Plasma Medicine Vol. 9, March 2018 Pages 24-33. MicroPlaSter and SteriPlas, Herbst et al, Comprehensive Clinical Plasma Medicine 2018 Springer International Book pages 503-509.

Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrime and paracrine mode,
S. Arndt, P. Unger, M. Berneburg, A. Bosserhoff, Journal of Dermatological Science 89 (2018) 181 – 190.

Investigation of toxicity and mutagenicity of cold atmospheric argon plasma Maisch, T.; Bosserhoff, A. K.; Unger, P.; Heider, J.; Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.; Landthaler, M.; Karrer, S. Environmental and Molecular Mutagenesis, Volume 58, Number 3, 1 April 2017, pp. 172-177(6)

Effects of Cold Atmospheric Plasma (CAP) on ß-Defensins, Inflammatory Cytokines, and Apoptosis-Related Molecules in Keratinocytes In Vitro and In Vivo,
Arndt , S; Landthaler, M. : Zimmemann, J.L; Arndt Unger ,P,: Wacker , E; Shimizu, T: Li, Y-F; Morfill, G.E. dKarrer, S, ‘ PLoS ONE 10(3) · January 2015

A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus, J. Heinlin, G. Isbary, W. Stolz, F. Zeman, M. Landthaler, G. Morfill, T. Shimizu, J. L. Zimmermann and S. Karrer, J Eur Acad Dermatol Venereol. 27 (3), 324-331 (2013).

Designing plasmas for chronic wound disinfection,
Tetyana Nosenko, Tetsuji Shimizu and Gregor E. Morfill, New Journal of Physics 11 (2009) 115013 (19pp)

 

LASMA IN MEDICINE

Biological and Microbiological Impact of Plasma Medicine in Wound Healing, Keith Cutting. Wound Healing UK 2016 (oral presentation).

Applications in plasma medicine — a SWOT approach,
Mitra. A., Morfill. G.E., Shimizu. T., Steffes. B., Isbary. G., Schmidt. H.-U., Li. Y.-F., Zimmermann. J.L., Composite Interfaces 19: 231-238, (2012).

Second Special Issue on Plasma Medicine,
M. Laroussi, A. Fridman, P. Favia and M. Wertheimer, Plasma Process. Polym. 7, 193 (2010).

Focus on Plasma Medicine,
Gregor E. Morfill, Michael G. Kong and Julia L. Zimmermann, New Journal of Physics 11 (2009) 115011 (8pp)

Low Temperature Plasmas for Medicine?,
M. Laroussi, IEEE Trans. Plasma Sci., Vol. 37, No. 6, pp. 714-725, 2009

Plasma medicine: an introductory review,
Michael G. Kong, Gerrit Kroesen, Gregor E. Morfill, Tetyana Nosenko, Tetsuji Shimizu, Jan van Dijk and Julia L. Zimmermann, New Journal of Physics 11 (2009) 115012 (35pp)

  1. Gay-Mimbrera, J; García, MC; Isla-Tejera, B; Rodero-Serrano, A; García-Nieto, AV; Ruano, J (June 2016). «Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer». Advances in Therapy. 33 (6): 894–909. doi:10.1007/s12325-016-0338-1. PMC 4920838. PMID 27142848.
  2. ^ Sladek, R.E.J. (2006). «Plasma needle : non-thermal atmospheric plasmas in dentistry». doi:10.6100/IR613009.
  3. ^ Laroussi, M., Alexeff, I., Richardson, J. P., and Dyer, F. F “ The Resistive Barrier Discharge”, IEEE Trans. Plasma Sci. 30, pp. 158-159, (2002)
  4. ^ Kuchenbecker M, Bibinov N, Kaemlimg A, Wandke D, Awakowicz P, Viöl W, J. Phys. D: Appl. Phys. 42 (2009) 045212 (10pp)
  5. ^ Laroussi, M., Richardson, J. P., and Dobbs, F. C. “ Effects of Non-Equilibrium Atmospheric Pressure Plasmas on the Heterotrophic Pathways of Bacteria and on their Cell Morphology”, Appl. Phys. Lett. 81, pp. 772-774, (2002)
  6. ^ Vandamme M., Robert E., Dozias S., Sobilo J., Lerondel S., Le Pape A., Pouvesle J.M., 2011. Response of human glioma U87 xenografted on mice to non thermal plasma treatment. Plasma Medicine 1:27-43.
  7. ^ Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J. (2015-01-01). «Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air». Plasma Sources Science and Technology. 24 (3): 035026. Bibcode:2015PSST…24c5026N. doi:10.1088/0963-0252/24/3/035026. ISSN 0963-0252.
  8. ^ Jump up to:a b Lu, X (2012). «On atmospheric-pressure non-equilibrium plasma jets and plasma bullets». Plasma Sources Science and Technology. 21 (3): 034005. Bibcode:2012PSST…21c4005L. doi:10.1088/0963-0252/21/3/034005.
  9. ^ Norberg, Seth A.; Tian, Wei; Johnsen, Eric; Kushner, Mark J. (2014-01-01). «Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid». Journal of Physics D: Applied Physics. 47 (47): 475203. Bibcode:2014JPhD…47U5203N. doi:10.1088/0022-3727/47/47/475203. ISSN 0022-3727.
  10. ^ Laroussi, M. “Low Temperature Plasma Jet for Biomedical Applications: A Review”, IEEE Trans. Plasma Sci. 43, pp. 703-711, (2015)
  11. ^ Zenker M, Argon plasma coagulation, GMS Krankenhaushyg Interdiszip 2008; 3(1):Doc15 (20080311)
  12. ^ Fridman G, Friedman G, Gutsol A, Shekter AB, Vasilets VN, Fridman A, Applied Plasma Medicine, Plasma Process Polym 5:503-533 (2008)
  13. ^ Graves, David B. (2012-01-01). «The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology». Journal of Physics D: Applied Physics. 45 (26): 263001. Bibcode:2012JPhD…45z3001G. doi:10.1088/0022-3727/45/26/263001. ISSN 0022-3727.
  14. ^ He, Zhonglei; Liu, Kangze; Manaloto, Eline; Casey, Alan; Cribaro, George P.; Byrne, Hugh J.; Tian, Furong; Barcia, Carlos; Conway, Gillian E. (2018-03-28). «Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death». Scientific Reports. 8 (1): 5298. Bibcode:2018NatSR…8.5298H. doi:10.1038/s41598-018-23262-0. ISSN 2045-2322. PMC 5871835. PMID 29593309.
  15. ^ Miller, Vandana; Lin, Abraham; Fridman, Alexander (2015-10-16). «Why Target Immune Cells for Plasma Treatment of Cancer». Plasma Chemistry and Plasma Processing. 36 (1): 259–268. doi:10.1007/s11090-015-9676-z. ISSN 0272-4324.

 

German / Deutsch:

 

English

 

Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells, S. Arndt, E. Wacker, S. Kaufmann, Y.-F. Li, T. Shimizu, H. M. Thomas, G. E. Morfill, S. Karrer, J. L. Zimmermann and A.-K. Bosserhoff, Experimental Dermatology 22 (4): 284-9 (2013).

Effects of cold atmospheric plasma on mucosal tissue culture, C. Welz, S. Becker, Y.-F. Li, T. Shimizu, J. Jeon, S. Schwenk-Zieger, H. M. Thomas, G. Isbary, G. E. Morfill, U. Harréus and J. L. Zimmermann, Journal of Physics D: Applied Physics 46, 045401 9pp (2013).

Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages, V. Boxhammer, Y-F. Li, J. Köritzer, T. Shimizu, T. Maisch, G. E. Morfill, J. Schlegel and J. L. Zimmermann, Mutation Research in press DOI: 10.1016/j.mrgentox.2012.12.015 (2013).

A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus, J. Heinlin, G. Isbary, W. Stolz, F. Zeman, M. Landthaler, G. Morfill, T. Shimizu, J. L. Zimmermann and S. Karrer, J Eur Acad Dermatol Venereol. 27 (3), 324-331 (2013).

Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices, Isbary. G., Köritzer. J., Mitra. A., Li. Y.-F., Shimizu. T., Schroeder. J., Höpner. I., Klämpfl. T.G., Schlegel. J., Morfill. G.E., Stolz. W., Zimmermann. J.L., Clinical Plasma Medicine, (DOI: http://dx.doi.org/10.1016/j.cpme.2012.10.001), (2013).

Inactivation of surface borne microorganisms and increased germination of seed specimen by Cold Atmospheric Plasma (CAP), Mitra. A., Li. Y.-F. Klämpfl. T.G., Shimizu. T., Jeon. J., Morfill. G.E., Zimmermann. J.L., Food and Bioprocess Technology, (DOI: 10.1007/s11947-013-1126-4) (2013).

 

References

Deng S, Ruan R, Mok C K, Huang G, Lin X and Chen P 2007 Inactivation of Escherichia coli on almonds using nonthermal plasma J. Food Sci. 72 M62-6

CrossrefPubMedGoogle Scholar

Deilmann M, Halfmann H, Bibinov N, Wunderlich J and Awakowicz P 2008 Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles J. Food Prot. 71 2119-23

CrossrefPubMedGoogle Scholar

Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N and Fridman A 2008 Applied plasma medicine Plasma Process. Polym. 5 503-33

CrossrefGoogle Scholar

Moreau M, Orange N and Feuilloley M G J 2008 Non-thermal plasma technologies: new tools for bio-decontamination Biotechnol. Adv. 26 610-7

CrossrefPubMedGoogle Scholar

Selcuk M, Oksuz L and Basaran P 2008 Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment Bioresour. Technol. 99 5104-9

CrossrefPubMedGoogle Scholar

Deng X, Shi J J and Kong M G 2007 Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms J. Appl. Phys. 101 074701

CrossrefGoogle Scholar

Morrison J C F 1977 Electrosurgical method and apparatus for initiating an electrical discharge in an inert gas flow US Patent No. 4,040,426

Google Scholar

Farin G and Grund K E 1994 Technology of argon plasma coagulation with particular regard to endoscopic applications Endosc. Surg. Allied Technol. 2 71-7

PubMedGoogle Scholar

Lerouge S, Wertheimer M R and Yahia L’H 2001 Plasma sterilization: a review of parameters, mechanisms, and limitations Plasmas Polym. 6 175-88

CrossrefGoogle Scholar

Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M and Yahia L’H 2001 Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms Int. J. Pharm. 226 1-21

CrossrefPubMedGoogle Scholar

Laroussi M 2002 Non-thermal decontamination of biological media by atmospheric pressure plasmas: review, analysis and prospects IEEE Trans. Plasma Sci. 30 1409-15

CrossrefGoogle Scholar

Sharma A, Pruden A, Zengqi Y and Collins G J 2005 Bacterial inactivation in open air by the afterglow plume emitted from a grounded hollow slot electrode Environ. Sci. Technol. 39 339-44

CrossrefPubMedGoogle Scholar

Sladek R E and Stoffels E 2005 Deactivation of Escherichia coli by the plasma needle J. Phys. D: Appl. Phys. 38 1716-21

IOPscienceGoogle Scholar

Laroussi M, Mendis D A and Rosenberg M 2003 Plasma interactions with microbes New J. Phys. 5 41

IOPscienceGoogle Scholar

Brekhov E I, Kozlov N P, Rebizov V I, Tartynskiĭ S I, Suslov N I, Pekeshev A V and Naidenko M V 1989 Experimental and clinical studies and prospects of using plasma flows Khirurgiia (Mosk) 7 94-6

PubMedGoogle Scholar

Stolz W 2007 Low-temperature argon plasma for the sterilization of chronic wounds; from bench to beside Abstracts 1st Int. Plasma Medicine Conf. (Corpus Christi) p 15

Google Scholar

Isbary G 2009 Low-temperature argon plasma to decrease bacterial load on chronic wounds Abstracts 2nd Int. Plasma Medicine Conf. (San Antonio) p 49

Google Scholar

Davydov A I, Kuchukhid ze S T, Shekhter A B, Khanin A G, Pekshev A V and Pankratov V V 2004 Clinical evaluation of the intraoperative application of air-plasma flow enriched by nitrogen monoxide in operations on uterus and adnexa Prob. Gyneco. Obstet. Perinatol. 3 12-7 (in Russian)

Google Scholar

Grigorian A S, Grudyanov A I, Frolova O A, Antipova Z P, Yerokhin A I, Shekhter A B and Pekshev A V 2001 Application of a new biological factor, exogenous nitric oxide, for the surgical treatment of periodontis Stomatology 80 80-3 (in Russian)

Google Scholar

Shekhter A B, Serezhenkov V A, Rudenko T G, Pekshev A V and Vanin A F 2005 Beneficial effect of gaseous nitric oxide on the healing of skin wounds Nitric oxide 12 210-9

CrossrefPubMedGoogle Scholar

Golubovskii G A, Prokofieva E I, Inkina A V and Komarova E Zh 2004 Application of exogenous nitric oxide in otolaryngology Russ. Otolaryngol. 5 56-9 (in Russian)

Google Scholar

Lee M H et al 2009 Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure New J. Phys. 11 115022

IOPscienceGoogle Scholar

Leduc M et al 2009 Cell permeabilization using a non-thermal plasma New J. Phys. 11 115021

IOPscienceGoogle Scholar

Sato T et al 2009 Generation and transport mechanism of chemical species by a post-discharge flow for inactivation of bacteria New J. Phys. 11 115018

IOPscienceGoogle Scholar

Nosenko T et al 2009 Designing plasmas for chronic wound disinfection New J. Phys. 11 115013

IOPscienceGoogle Scholar

Rossi F et al 2009 Low pressure plasma discharges for the sterilization and decontamination of surfaces New J. Phys. 11 115017

IOPscienceGoogle Scholar

Singh M K et al 2009 Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture New J. Phys. 11 115027

IOPscienceGoogle Scholar

Baxter H C et al 2009 Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination New J. Phys. 11 115028

IOPscienceGoogle Scholar

Martines E et al 2009 A novel plasma source for sterilization of living tissues New J. Phys. 11 115014

IOPscienceGoogle Scholar

Pompl R et al 2009 The effect of low-temperature plasma on bacteria observed by repeated AFM imaging New J. Phys. 11 115023

IOPscienceGoogle Scholar

Dobrynin D et al 2009 Physical and biological mechanisms of direct plasma interaction with living tissue New J. Phys. 11 115020

IOPscienceGoogle Scholar

Morfill G et al 2009 Nosocomical infections-a new approach towards preventive medicine using plasmas New J. Phys. 11 115019

IOPscienceGoogle Scholar

Kuo S P et al 2009 Portable air plasma torch contributes to rapid blood coagulation as a method of preventing bleeding New J. Phys. 11 115016

IOPscienceGoogle Scholar

Helmke A, Hoffmeister D, Mertens N, Emmert S, Schuette J and Vioel W 2009 Acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air New J. Phys. 11 115025

IOPscienceGoogle Scholar

Lee H J, Shon C H, Kim Y S, Kim S, Kim G-C and Kong M G 2009 Degradation of adhesion molecules of G361 melanoma cells by a nonthermal atmospheric pressure microplasma New J. Phys. 11 115026

IOPscienceGoogle Scholar

Bayliss D L, Walsh J L, Shama G, Iza F and Kong M G 2009 Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet New J. Phys. 11 115024

IOPscienceGoogle Scholar

Nie Q Y, Cao Z, Ren C S, Wang D Z and Kong M G 2009 A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine New J. Phys. 11 115015

IOPscienceGoogle Scholar

Grundmann H, Aires-de-Sousa M, Boyce J and Tiemersma E 2006 Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat Lancet 368 874-85

CrossrefPubMedGoogle Scholar

Klein L and Gibbs R 2004 Use if microbial cultures and antibiotics in the prevention of infection-associated preterm birth AJOG 190 1493-502

CrossrefGoogle Scholar

Etufugh C N and Phillips T J 2007 Venous ulcers Clin. Dermatol. 25 121-30

CrossrefPubMedGoogle Scholar

Bogle M A, Arndt K A and Dover J S 2007 Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation Arch. Dermatol. 143 168-174

CrossrefPubMedGoogle Scholar

Kilmer S, Semchyshyn N, Shag G and Fitzpatrick R 2007 A pilot study on the use of a plasma skin regeneration device (Portrait PSR3) in full facial rejuvenation procedures Lasers Med. Sci. 22 101-9

CrossrefPubMedGoogle Scholar

Elsaie M L and Kammer J N 2008 Evaluation of plasma skin regeneration technology for cutaneous remodeling J. Cosmet. Dermatol. 7 309-11

CrossrefPubMedGoogle Scholar

Foster K W, Moy R L and Fincher E F 2008 Advances in plasma skin regeneration J. Cosmet. Dermatol. 7 169-79

CrossrefPubMedGoogle Scholar

Potter M J, Harrison R, Ramsden A, Bryan B, Andrews P and Gault D 2007 Facial acne and fine lines: transforming patient outcomes with plasma skin regeneration Ann. Plast. Surg. 58 608-13

CrossrefPubMedGoogle Scholar

Kilmer S, Fitzpatrick R, Bernstein E and Brown D 2005 Long term follow-up on the use of plasma skin regeneration (PSR) in full facial rejuvenation procedures Lasers Surg. Med. 36 22

PubMedGoogle Scholar

Lee H W, Kim G J, Kim J M, Park J K, Lee J K and Kim G C 2009 Tooth bleaching with nonthermal atmospheric pressure plasma J. Endod. 35 587-91

CrossrefPubMedGoogle Scholar

Heinlin J 2009 in preparation

Google Scholar

Grice E A et al 2009 Topographical and temporal diversity of the human skin microbiome Science 324 1190-2

CrossrefPubMedGoogle Scholar

Sears C L 2005 A dynamic partnership: celebrating our gut flora, Anaerobe 11 247-51

CrossrefPubMedGoogle Scholar

Fridman G, Brooks A D, Balasubramanian M, Fridman Am Gutsol A, Vasilets V N, Ayan H and Friedman G 2007 Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria Plasma Process. Polym. 4 370-5

CrossrefGoogle Scholar

Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A and Friedman G 2006 Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air Plasma Chem. Plasma Process. 26 425-42

CrossrefGoogle Scholar

Kieft I E, van der Laan E P and Stoffels E 2004 Electrical and optical characterization of the plasma needle New J. Phys. 6 149

IOPscienceGoogle Scholar

Weltmann K D, Brandenburg R, Woetke T, Ehlbeck J, Foest R, Stieber M and Kindel E 2008 Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs) J. Phys. D: Appl. Phys. 41 194008

IOPscienceGoogle Scholar

Walsh J L and Kong M G 2008 Contrasting characteristics of linear-field and cross-field atmospheric plasma jets Appl. Phys. Lett. 93 111501

CrossrefGoogle Scholar

Shimizu T et al 2008 Characterization of microwave plasma torch for decontamication Plasma Process Polym. 5 577-82

CrossrefGoogle Scholar

Weltmann K D, Brandenburg R, Ehlbeck J, Forest R, Stieber E and Woettke T 2008 Plasma decontamination at atmospheric pressure-basics and applications Proc. IEEE 35th Int. Conf. on Plasma Science

Google Scholar

Foest R, Kindel E, Ohl A, Stieber M and Weltmann K D 2005 Non-thermal atmospheric pressure discharges for surface modification Plasma Phys. Control. Fusion 47 B525-36

IOPscienceGoogle Scholar

Pipa A V, Bindemann T, Foest R, Kindel E, Roepcke J and Weltmann K D 2008 Absolute production rate measurements of nitric oxide by an atmospheric pressure plasma jet (APPJ) J. Phys. D: Appl. Phys. 41 194011

IOPscienceGoogle Scholar

Woedke T, Kramer A and Weltmann K D 2008 Plasma sterilization: what are the conditions to meet this claim? Plasma Process. Polym. 5 534-539

CrossrefGoogle Scholar

Weltmann K D 2009 private communication

Google Scholar

Brok W J M, Bowden M D, van Dijk J, van der Mullen J J A M and Kroesen G M W 2005 Numerical description of discharge characteristics of the plasma needle J. Appl. Phys. 98 013302

CrossrefGoogle Scholar

Kim H C, Iza F, Yang S S, Radmilovic-Radjenovic M and Lee J K 2005 Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects J. Phys. D: Appl. Phys. 38 R283-301

IOPscienceGoogle Scholar

Sakiyama Y and Graves D B 2006 Finite element analysis of an atmospheric pressure rf-excited plasma needle J. Phys. D: Appl. Phys. 39 3451-6

IOPscienceGoogle Scholar

Sakiyama Y and Graves D B 2006 Corona-glow transition in the atmospheric pressure rf-excited plasma needle J. Phys. D: Appl. Phys. 39 3644-52

IOPscienceGoogle Scholar

Sakiyama Y and Graves D B 2007 Nonthermal atmospheric rf plasma in one-dimensional spherical coordinates: asymmetric sheath structure and the discharge mechanism J. Appl. Phys. 101 073306

CrossrefGoogle Scholar

Sakiyama Y, Graves D B and Stoffels E 2008 Influence of electrical properties of treated surface on rf-excited plasma needle at atmospheric pressure J. Phys. D: Appl. Phys. 41 095204

IOPscienceGoogle Scholar

Sakiyama Y and Graves D B 2009 Neutral gas flow and ring-shaped emission profile in non-thermal rf-excited plasma needle discharge at atmospheric pressure Plasma Sources Sci. Technol. 18 025022

IOPscienceGoogle Scholar

Goree J, Liu B and Drake D 2006 Gas flow dependence for plasma-needle disinfection of s. mutans bacteria J. Phys. D: Appl. Phys. 39 3479-86

IOPscienceGoogle Scholar

Boeuf J P 2003 Plasma display panels: physics, recent developments and key issues J. Phys. D: Appl. Phys. 36 R53-79

IOPscienceGoogle Scholar

Kushner M J 2004 Modeling of microdischarge devices: Pyramidal structures J. Appl. Phys. 95 846-59

CrossrefGoogle Scholar

Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T and Kong M G 2008 Microplasmas: sources, particle kinetics, and biomedical applications Plasma Process. Polym. 5 322-344

CrossrefGoogle Scholar

Maclaughlin J A, Anderson R R and Holick M F 1982 Spectral character of sunlight modulates photosynthesis of previtamin-D3 and its photoisomers in human-skin Science 216 1001-3

CrossrefPubMedGoogle Scholar

Zawilska J B, Rosiak J and Nowak J Z 1999 Effects of near-ultraviolet (UV-A) light on melatonin biosynthesis in vertebrate pineal gland Biol. Signals Receptors 8 64-9

CrossrefGoogle Scholar

The International Commission on Non-Ionizing Radiation Protection 2004 Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation) Health Phys. 87 171-86

CrossrefPubMedGoogle Scholar

Chadwick C A, Potten C S, Nikaido O, Matsunaga T, Proby C and Young A R 1995 The detection of cyclobutane thymine dimers, (6-4) photolesions using specific antibodies, and the demonstration of depth penetration effects J. Photochem. Photobiol. B 28 163-70

CrossrefGoogle Scholar

Kuzina S I and Mikhailov A I 1998 Photo-oxidation of polymers 2. Photo-chain reaction of peroxide radicals in polystyrene Eur. Polym. J. 34 291-9

CrossrefGoogle Scholar

Michnik A, Michalik K and Drzazga Z 2008 Effect of UVC radiation on conformational restructuring of human serum albumin J. Photochem. Photobiol. B 90 170-8

CrossrefPubMedGoogle Scholar

Bose B, Agarwal S and Chatterjee S N 1990 Membrane lipid peroxidation by UV-A: mechanism and implications Biotechnol. Appl. Biochem. 12 557-61

PubMedGoogle Scholar

Jurkiewicz B A and Buettner G R 1994 Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study Photochem. Photobiol. 59 1-4

CrossrefPubMedGoogle Scholar

Ogura R, Sugiyama M, Nishi J and Haramaki N 1991 Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light J. Invest. Dermatol. 97 1044-7

CrossrefPubMedGoogle Scholar

Durant S T, Paffett K S, Shrivastav M, Timmins G S, Morgan W F and Nickoloff J A 2006 UV radiation induces delayed hyperrecombination associated with hypermutation in human cells Mol. Cell. Biol. 26 6047-55

CrossrefPubMedGoogle Scholar

Munakata N, Hieda K, Kobayashi K, Ito A and Ito T 1986 Action spectra in ultraviolet wavelengths (150-250 nm) for inactivation and mutagenesis of Bacillus subtilis spores obtained with synchrotron radiation Photochem. Photobiol. 44 385-90

CrossrefPubMedGoogle Scholar

Friedberg E C 2001 How nucleotide excision repair protects against cancer Nat. Rev. Cancer 1 22-33

CrossrefPubMedGoogle Scholar

Waris G and Ahsan H 2006 Reactive oxygen species: role in the development of cancer and various chronic conditions J. Carcinog. 5 14

CrossrefPubMedGoogle Scholar

MacMicking J, Xie Q W and Nathan C 1997 Nitric oxide and macrophage function Annu. Rev. Immunol. 15 323-50

CrossrefPubMedGoogle Scholar

Nathan C F 1987 Secretory products of macrophages J. Clin. Invest. 79 319-26

CrossrefPubMedGoogle Scholar

Thannickal V J and Fanburg B L 2000 Reactive oxygen species in cell signalling Am. J. Physiol.-Lung Cell. Mol. Physiol. 279 L1005-28

CrossrefPubMedGoogle Scholar

Gamou S and Shimizu N 1995 Hydrogen-peroxide preferentially enhances the tyrosine phosphorylation of epidermal growth-factor receptor FEBS Lett. 357 161-4

CrossrefPubMedGoogle Scholar

Gonzalez Rubio M, Voit S, Rodriguez Puyol D, Weber M and Marx M 1996 Oxidative stress induces tyrosine phosphorylation of PDGF alpha-receptors and beta-receptors and pp60(c-src) in mesangial cells Kidney Int. 50 164-73

CrossrefPubMedGoogle Scholar

Meyer M, Schreck R and Baeuerle P A 1993 H2O2 and antioxidants have opposite effects on activation of Nf-Kappa-B and Ap-1 in intact-cells-Ap-1 as secondary antioxidant-responsive factor EMBO J. 12 2005-15

CrossrefPubMedGoogle Scholar

Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S and Kuroki T 1991 Transcriptional activation of early-response genes by hydrogen-peroxide in a mouse osteoblastic cell-line Eur. J. Biochem. 201 99-106

CrossrefPubMedGoogle Scholar

Cooke J P and Losordo D W 2002 Nitric oxide and angiogenesis Circulation 105 2133-5

CrossrefPubMedGoogle Scholar

Jacintho J D and Kovacic P 2003 Neurotransmission and neurotoxicity by nitric oxide, catecholamines, and glutamate: unifying themes of reactive oxygen species and electron transfer Curr. Medicinal Chem. 10 2693-703

CrossrefGoogle Scholar

Janssen-Heininger Y M W, Persinger R L, Korn S H, Pantano C, McElhinney B, Reynaert N L, Langen R C J, Ckless K, Shrivastava P and Poynter M E 2002 Reactive nitrogen species and cell signalling-Implications for death or survival of lung epithelium Am. J. Respir. Crit. Care Med. 166 S9-16

CrossrefGoogle Scholar

Krotz F, Sohn H Y and Pohl U 2004 Reactive oxygen species-players in the platelet game Arterioscler. Thromb. Vasc. Biol. 24 1988-96

CrossrefPubMedGoogle Scholar

Cook J A, Gius D, Wink D A, Krishna M C, Russo A and Mitchell J B 2004 Oxidative stress, redox, and the tumor microenvironment Semin. Radiat. Oncol. 14 259-66

CrossrefPubMedGoogle Scholar

Mander P K, Jekabsone A and Brown G C 2006 Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase J. Immunol. 176 1046-52

CrossrefPubMedGoogle Scholar

Polytarchou C, Hatziapostolou M and Papadimitriou E 2005 Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene J. Biolo. Chem. 280 40428-35

CrossrefGoogle Scholar

Sauer H, Wartenberg M and Hescheler J 2001 Reactive oxygen species as intracellular messengers during cell growth and differentiation Cell. Physiol. Biochem. 11 173-86

CrossrefPubMedGoogle Scholar

van Wetering S, van Buul J D, Quik S, Mul F P, Anthony E C, ten Klooster J P, Collard J G and Hordijk P L 2002 Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells J. Cell Sci. 115 1837-46

PubMedGoogle Scholar

Sen C K, Khanna S, Babior B M, Hunt T K, Ellison E C and Roy S 2002 Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing J. Biolo. Chem. 277 33284-90

CrossrefGoogle Scholar

Witte M B, Thornton F J, Efron D T and Barbul A. 2000 Enhancement of fibroblast collagen synthesis by nitric oxide Nitric Oxide 4 572-82

CrossrefPubMedGoogle Scholar

Granger D N and Kubes P 1996 Nitric oxide as antiinflammatory agent Methods Enzymol. 269 434-42

CrossrefPubMedGoogle Scholar

Hogg N and Kalyanaraman B 1999 Nitric oxide and lipid peroxidation Biochim. Biophys. Acta 1411 378-84

CrossrefPubMedGoogle Scholar

Lam M A, Pattison D I, Bottle S E, Keddie D J and Davies M J 2008 Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals Chem. Res. Toxicol. 21 2111-9

CrossrefPubMedGoogle Scholar

Oplander C, Wetzel W, Cortese M M, Pallua N and Suschek C V 2008 Evidence for a physiological role of intracellularly occurring photolabile nitrogen oxides in human skin fibroblasts Free Radic. Biol. Med. 44 1752-61

CrossrefPubMedGoogle Scholar

Wink D A, Hanbauer I, Krishna M C, DeGraff W, Gamson J and Mitchell J B 1993 Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species Proc. Natl. Acad. Sci. USA 90 9813-7

CrossrefPubMedGoogle Scholar

Brown G C and Borutaite V 2002 Nitric oxide inhibition of mitochondrial respiration and its role in cell death Free. Radic. Biol. Med. 33 1440-50

CrossrefPubMedGoogle Scholar

Kroncke K, Fehsel K and Kolb-Bachofen V 1997 Cytotoxicity versus cytoprotection-how, why, when, and where? Nitric Oxide 1 107-20

CrossrefPubMedGoogle Scholar

Rauen U, Li T, Ioannidis I and de Groot H 2007 Nitric oxide increases toxicity of hydrogen peroxide against rat liver endothelial cells and hepatocytes by inhibition of hydrogen peroxide degradation Am. J. Physiol. Cell Physiol. 292 C1440-9

CrossrefPubMedGoogle Scholar

Clancy R M, Leszczynskapiziak J and Abramson S B 1992 Nitric-oxide, an endothelial-cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase J. Clin. Invest. 90 1116-21

CrossrefPubMedGoogle Scholar

Chae H J, Kim H R, Kwak Y G, Ko J K, Joo C U and Chae S W 2001 Signal transduction of nitric oxide donor-induced protection in hydrogen peroxide-mediated apoptosis in H9C2 cardiomyoblasts Immunopharmacol. Immunotoxicol. 23 187-204

CrossrefPubMedGoogle Scholar

Farias-Eisner R, Chaudhuri G, Aeberhard E and Fukuto J M 1996 The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility J. Biol. Chem. 271 6144-51

CrossrefPubMedGoogle Scholar

Kotamraju S, Tampo Y, Keszler A, Chitambar C R, Joseph J, Haas A L and Kalyanaraman B 2003 Nitric oxide inhibits H2O2-induced transferrin receptor-dependent apoptosis in endothelial cells: role of ubiquitin-proteasome pathway Proc. Natl. Acad. Sci. USA 100 10653-8

CrossrefPubMedGoogle Scholar

Yoshioka Y, Kitao T, Kishino T, Yamamuro A and Maeda S 2006 Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase J. Immunol. 176 4675-81

CrossrefPubMedGoogle Scholar

Pacelli R, Wink D A, Cook J A, Krishna M C, DeGraff W, Friedman N, Tsokos M, Samuni A and Mitchell J B 1995 Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182 1469-79

CrossrefPubMedGoogle Scholar

Dawe R S 2003 A quantitative review of studies comparing the efficacy of narrow-band and broad-band ultraviolet B for psoriasis Br. J. Dermatol. 149 669-72

CrossrefPubMedGoogle Scholar

Reynolds N J, Franklin V, Gray J C, Diffey B L and Farr P M 2001 Narrow-band ultraviolet B and broad-band ultraviolet A phototherapy in adult atopic eczema: a randomised controlled trial Lancet 357 2012-6

CrossrefPubMedGoogle Scholar

Yones S S, Palmer R A, Garibaldinos T M and Hawk J L 2007 Randomized double-blind trial of treatment of vitiligo: efficacy of psoralen-UV-A therapy vs narrowband-UV-B therapy Arch. Dermatol. 143 578-84

CrossrefPubMedGoogle Scholar

Chotigeat U, Khorana M and Kanjanapattanakul W 2007 Inhaled nitric oxide in newborns with severe hypoxic respiratory failure J. Med. Assoc. Thai. 90 266-71

PubMedGoogle Scholar

Miller M R and Megson I L 2007 Recent developments in nitric oxide donor drugs Br. J. Pharmacol. 151 305-21

CrossrefPubMedGoogle Scholar

Roy S, Khanna S, Nallu K, Hunt T K and Sen C K 2006 Dermal wound healing is subject to redox control Mol. Ther. 13 211-20

CrossrefPubMedGoogle Scholar

Petrova N and Edmonds M 2006 Emerging drugs for diabetic foot ulcers Expert Opin. Emerg. Drugs 11 709-24

CrossrefPubMedGoogle Scholar

Sen C K 2003 The general case for redox control of wound repair Wound Repair Regen. 11 431-8

CrossrefPubMedGoogle Scholar

Laroussi M 1996 Sterilization of contaminated matter with an atmospheric pressure plasma IEEE Trans. Plasma Sci. 24 1188-91

CrossrefGoogle Scholar

Prusiner S B 1998 Prions Proc. Natl. Acad. Sci. USA 95 13363-83

CrossrefPubMedGoogle Scholar

Stoffels E 2007 ‘Tissue processing’ with atmospheric plasmas Contrib. Plasma Phys. 47 40-8

CrossrefGoogle Scholar

Perni S, Shama G and Kong M G 2008 Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganizms J. Food Protection 71 1619-25

CrossrefGoogle Scholar

Deng X T, Shi J and Kong M G 2006 Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas IEEE Trans. Plasma Sci. 34 1310-6

CrossrefGoogle Scholar

Hall-Stoodley L, Costerton J W and Stoodley P 2004 Bacterial biofilms: from the natural environment to infectious diseases Nat. Rev. Microbiol. 2 95-108

CrossrefPubMedGoogle Scholar

Vleugels M, Shama G, Deng X T, Greenacre E, Brocklehurst T and Kong M G 2005 Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control IEEE Trans. Plasma Sci. 33 824-8

CrossrefGoogle Scholar

Sladek R E J, Filoche S K, Sissons C H and Stoffels E 2007 Treatment of Streptococcus mutants biofilms with a nonthermal atmospheric plasma Lett. Appl. Microbiol. 45 318-23

CrossrefPubMedGoogle Scholar

Vandervoort K G, Abramzon N and Brelles-Marino G 2008 Plasma interactions with bacterial biofilms as visualized through atomic force microscopy IEEE Trans. Plasma Sci. 36 1296-7

CrossrefGoogle Scholar

Lu X P, Cao Y G, Yang P, Xiong Q, Xiong Z L, Xian Y B and Pan Y 2009 An RC plasma device for sterilization of root canal of teeth IEEE Trans. Plasma Sci. 37 668-73

CrossrefGoogle Scholar

Deng X T, Shi J, Shama G and Kong M G 2005 Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores Appl. Phys. Lett. 87 153901

CrossrefGoogle Scholar

Yu H, Perni S, Shi J J, Wang D Z, Kong M G and Shama G 2006 Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12 Appl. Microbiol. 101 1323-30

CrossrefGoogle Scholar

Rampling A, Wiseman S, Davis L, Hyett A P, Walbridge A N, Payne G C and Cornaby A J 2001 Evidence that hospital hygiene is important in the control of methicillin-resistant Staphylococcus auleus. J. Hosp. Infect. 49 109-16

CrossrefPubMedGoogle Scholar

McDonald L C, Owings M and Jernigan D B 2006 Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996-2003 Emerg. Infect. Dis. 12 409-15

CrossrefPubMedGoogle Scholar

Lemmer K, Mielke M, Pauli G and Beekes M 2004 Decontamination of surgical instruments from prion proteins: in vitro studies on the detachment, destabilization and degradation of PrPSc bound to steel surfaces J. Gen. Virol. 85 3805-16

CrossrefPubMedGoogle Scholar

Deng X T, Shi J, Chen H L and Kong M G 2007 Protein destruction by atmospheric pressure glow discharges Appl. Phys. Lett. 90 013903

CrossrefGoogle Scholar

Giles K, Glidden D V, Beckwith R, Seoanes R, Peretz D, DeArmond S J and Prusiner S B 2008 Resistance of bovine spongiform encephatology (BSE) prions to inactivation PLoS Pathog. 4 e1000206

CrossrefPubMedGoogle Scholar

Kim G C 2009 private communication

Google Scholar

Laroussi M, Richardson J P and Dobbs F C 2002 Effects of non-equilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology Appl. Phys. Lett. 81 772-4

CrossrefGoogle Scholar

Laroussi M and Leipold F 2004 Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure Int. J. Mass Spectrom. 233 81-6

CrossrefGoogle Scholar

Sharman A, Pruden A, Yu Z and Collins G J 2005 Bacterial inactivation in open air by the afterglow plume emitted from a grounded hollow slot electrode Environ. Sci. Technol. 39 339-44

CrossrefPubMedGoogle Scholar

Perni S, Shama G, Hobman J L, Lund P A, Kershaw C J, Hidalgo-Arroyo G A, Penn C W, Deng X T, Walsh J L and Kong M G 2007 Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants Appl. Phys. Lett. 90 073902

CrossrefGoogle Scholar

Knake N, Reuter S, Niemi K, Schulz-von der Gathen V and Winter J 2008 Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet J. Phys. D: Appl. Phys. 41 194006

IOPscienceGoogle Scholar

Zhang Y T 2009 private communication

Google Scholar

Walsh J L and Kong M G 2007 10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces Appl. Phys. Lett. 91 251504

CrossrefGoogle Scholar

Walsh J L, Zhang Y T, Iza F and Kong M G 2008 Atmospheric-pressure gas breakdown from 2 to 100 MHz Appl. Phys. Lett. 93 221505

CrossrefGoogle Scholar

Walsh J L, Iza F and Kong M G 2008 Atmospheric glow discharges from the high-frequency to very high-frequency bands Appl. Phys. Lett. 93 251502

CrossrefGoogle Scholar

Bruggeman P, Liu J J, Degroote J, Kong M G, Vierendeels J and Leys C 2008 Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems J. Phys. D: Appl. Phys. 41 215201.

Google Scholar

Stoffels E, Sakiyama Y and Graves D B 2008 Cold atmospheric plasma: charged species and their interactions with cells and tissues IEEE Trans. Plasma Sci. 36 1441-57

CrossrefGoogle Scholar

Li G, Li H P, Wang L Y, Wang S, Zhao H X, Sun W T, Xing X H and Bao C Y 2008 Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium Appl. Phys. Lett. 92 221504

CrossrefGoogle Scholar

Kalghatgi S U, Fridman G, Fridman A, Friedman G and Clyne A M 2008 Non-thermal dielectric barrier discharge plasma treatment of endothelial cells Conf. Proc. IEEE Eng. Med. Biol. Soc. pp 3578-81

PubMedGoogle Scholar

Fridman G, Shereshevsky A, Jost M M, Brooks A D, Fridman A, Gutsol A, Vasilets V and Friedman G 2007 Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines Plasma Chem. Plasma Process. 27 163-76

CrossrefGoogle Scholar

Kieft I E, Darios D, Roks A J M and Stoffels E 2005 Plasma treatment of mammalian vascular cells: a quantitative description IEEE Trans. Plasma Sci. 33 771-5

CrossrefGoogle Scholar

Kieft I E, Kurdi M and Stoffels E 2006 Reattachment and apoptosis after plasma-needle treatment of cultures cells IEEE Trans. Plasma Sci. 34 1331-6

CrossrefGoogle Scholar

Shashurin A, Keidar M, Bronnikov S, Jurjus R A and Stepp M A 2008 Living tissue under treatment of cold plasma atmospheric jet Appl. Phys. Lett. 93 181501

CrossrefGoogle Scholar

Stoffels E, Kieft I E and Sladek R E J 2003 Superficial treatment of mammalian cells using plasma needle J. Phys. D: Appl. Phys. 36 2908-13

IOPscienceGoogle Scholar

Stoffels E, Roks A J M and Deelmm L E 2008 Delayed effects of cold atmospheric plasma on vascular cells Plasma Process. Polym. 5 599-605

CrossrefGoogle Scholar

Yonson S, Coulombe S, Leveille V and Leask R L 2006 Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch J. Phys. D: Appl. Phys. 39 3508-13

IOPscienceGoogle Scholar

Stadler K R and Woloszko J 2007 Some physics and chemistry of electrosurgical plasma discharges Contrib. Plasma Phys. 47 64-71

CrossrefGoogle Scholar

Kalghatgi S U, Fridman G, Cooper M, Nagaraj G, Peddinghaus M, Balasubramanian M, Vasilets V N, Gutsol A F, Fridman A and Friedman G 2007 Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma IEEE Trans. Plasma Sci. 35 1559-66

CrossrefGoogle Scholar

Kanduc D et al 2002 Cell death: apoptosis versus necrosis (review) Int. J. Oncol. 21 165-70

PubMedGoogle Scholar

Kim D, Gweon B, Kim D, Choe W and Shin J 2008 A feasibility study for the cancer therapy using cold plasma 13th Int. Conf. on Biomedical Engineering pp 355-7

Google Scholar

Kim G, Lee H and Shon C 2009 The effect of a micro plasma on melanoma (G361) cancer cells J. Korean Phys. Soc. 54 628-632

CrossrefGoogle Scholar

Zhang X H, Li M J, Zhou R L, Feng K C and Yang S Z 2008 Ablation of liver cancer cells in vitro by a plasma needle Appl. Phys. Lett. 93 021502

CrossrefGoogle Scholar

McCaig C D, Rajnicek A M, Song B and Zhao M 2005 Controlling cell behavior electrically: current views and future potential Physiol. Rev. 85 943-78

CrossrefPubMedGoogle Scholar

Mamontov S G and Ivanova L N 1971 Effect of a low-frequency electric field on cell division in mouse tissues Translated from Byulleten’ Fksperimental’noi Biologii i Meditsiny 71 95-6

Google Scholar

Titushkin I and Cho M 2009 Regulation of cell cytoskeleton and mechanics by electric field: role of linker proteins Biophys. J. 96 717-28

CrossrefPubMedGoogle Scholar

Robinson K R 1985 The responses of cells to electric fields: a review J. Cell Biol. 101 2023-7

CrossrefPubMedGoogle Scholar

Cho M R, Thatte H S, Silvia M T and Golan D E 1990 Transmembrane calcium influx induced by ac electric fields FASEB J. 13 677-83

CrossrefGoogle Scholar

Bourguignon G J and Bourguignon L Y W 1987 Electric stimulation of protein and DNA synthesis in human fibroblasts FASEB J. 1 398-402

CrossrefPubMedGoogle Scholar

Forrester J V, Lois N, Zhao M and McCaig C 2007 The spark of life: the role of electric fields in regulating cell behaviour using the eye as a model system Ophthalmic Res. 39 4-16

CrossrefPubMedGoogle Scholar

Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe S J and Buescher S 2003 Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis Mutation Res. 542 65-75

CrossrefPubMedGoogle Scholar

Chang D C 1989 Cell poration and cell fusion using an oscillating electric field Biophys. J. 56 641-52

CrossrefPubMedGoogle Scholar

Teissié J and Rols M-P 1993 An Experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization Biophys. J. 65 409-13

CrossrefPubMedGoogle Scholar

Beebe J S, White J, Blackmore P F, Deng Y, Somers K and Schoenbach K H 2003 Diverse effects of nanosecond pulsed electric fields on cells and tissues DNA Cell Biol. 22 785-96

CrossrefPubMedGoogle Scholar

Susil R, Šemrov D and Miklavčič D 1998 Electric field-induced transmembrane potential depends on cell density and organization Electro magnetobiol. 17 391-9

CrossrefGoogle Scholar

Frey W, White J A, Price R O, Blackmore P F, Joshi R P, Nuccitelli R, Beebe S J, Schoenbach K H and Kolb J F 2006 Plasma membrane voltage changes during nanosecond pulsed electric field exposure Biophys. J. 90 3608-15

CrossrefPubMedGoogle Scholar

Binhi V N and Goldman R J 2000 Ion-protein dissociation predicts ‘windows’ in electric field-induced wound-cell proliferation Biochim. Biophys. Acta 1474 147-56

CrossrefPubMedGoogle Scholar

Gowrishankar T R and Weaver J C 2003 An approach to electrical modeling of single and multiple cells Proc. Natl. Acad. Sci. USA 100 3203-8

CrossrefPubMedGoogle Scholar

Kirson E D et al 2007 Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors Proc. Natl. Acad. Sci. USA 104 10152-7

CrossrefPubMedGoogle Scholar

Keese C R and Giaever I 1994 A biosensor that monitors cell morphology with electrical fields IEEE Eng. Med. Biol. 13 402-8

CrossrefGoogle Scholar

Joshi R P and Schoenbach K H 2000 Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study Phys. Rev. E 62 1025-33

CrossrefGoogle Scholar

Joshi R P, Hu Q, Aly R and Schoenbach K H 2001 Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses Phys. Rev. E 64 011913

CrossrefGoogle Scholar

Hu Q, Viswanadham S, Joshi R P, Schoenbach K H, Beebe S J and Blackmore P F 2005 Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse Phys. Rev. E 71 031914

CrossrefGoogle Scholar

Wang E, Reid B, Lois N, Forrester J V, McCaig C D and Zhao M 2005 Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract? FASEB J. 19 842-4

CrossrefPubMedGoogle Scholar

Zimmerman U 1982 Electric field-mediated fusion and related electrical phenomena Biochim. Biophys. Acta 694 227-77

CrossrefPubMedGoogle Scholar

Zimmerman U, Pilwat G and Pohl H A 1982 Electric field-mediated cell fusion J. Biol. Phys. 10 43-50

CrossrefGoogle Scholar

Brown M J and Loew L M 1994 Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent J. Cell Biol. 127 117-28

CrossrefPubMedGoogle Scholar

Onuma E K and Hui S-W 1988 Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent J. Cell Biol. 106 2067-75

CrossrefPubMedGoogle Scholar

Beebe S J, Fox P M, Rec L J, Willis E L K and Schoenbach K H 2003 Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells FASEB J. 17 1493-5

CrossrefPubMedGoogle Scholar

Beebe S J, Fox P M, Rec L J, Somers K, Stark R H and Schoenbach K H 2001 Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition Digest of Papers IEEE Int. Conf. Plasma Sci. pp. 211-5

Google Scholar

Schoenbach K H, Katsuki S, Stark R H, Buescher E S and Beebe S J 2002 Bioelectrics-new applicants for pulsed power technology IEEE Trans. Plasma Sci. 30 293-300

CrossrefGoogle Scholar

Schoenbach K H, Joshi R P, Kolb J F, Chen N, Stacey M, Blackmore P F, Buescher E S and Beebe S J 2004 Ultrashort electrical pulses open a new gateway into biological cells Proc. IEEE 92 1122-37

CrossrefGoogle Scholar

Schoenbach K H, Peterkin F E, Alden R W and Beebe S J 1997 The effect of pulsed electric fields on biological cells: experiments and applications IEEE Trans. Plasma Sci. 25 284-92

CrossrefGoogle Scholar

Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson R J, Beebe S J, Kolk J F and and S 2006 Nanosecond pulsed electric fields cause melanomas to self-destruct Biochem. Biophys. Res. Commun. 343 351-60

CrossrefPubMedGoogle Scholar

Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe S J and Buescher S 2003 Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis Mutat. Res. 542 65-75

CrossrefPubMedGoogle Scholar

White J A, Blackmore P F, Schoenbach K H and Beebe S J 2004 Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields J. Biol. Chem. 279 22964-72

CrossrefPubMedGoogle Scholar

Schoenbach K H, Joshi R P, Stark R H, Dobbs F C and Beebe S J 2000 Bacterial decontamination of liquids with pulsed electric fields IEEE Trans. Dielectr. Electr. Insul. 7 637-45

CrossrefGoogle Scholar

Buescher E S and Schoenbach K H 2003 Effects of submicrosecond, high intensity pulsed electric fields on living cells-intracellular electromanipulation IEEE Trans. Dielectr. Electr. Insul. 10 788-94

CrossrefGoogle Scholar

Beebe S J, Blackmore F P, White J, Joshi R P, Schoenbach K H and Hjalmaron H P 2004 Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms Physiol. Meas. 25 1077-93

IOPscienceGoogle Scholar

Deng J, Schoenbach K H, Buescher E S, Hair P S, Fox P M and Beebe S J 2003 The effects of intense submicrosecond electrical pulses on cells Biophys. J. 84 2709-14

CrossrefPubMedGoogle Scholar

Goldman R and Pollack S 1996 Electric fields and proliferation in a chronic wound model Bioelectromagnetics 17 450-7

CrossrefPubMedGoogle Scholar

Dubé J, Méthot S, Moulin V, Goulet D, Bourdage M, Auger F A and Germain L 2005 External electric fields induce morphological changes on human skin cells cultured in vitro Proc. XXVIIIth URSI General Assembly (New Delhi)

Google Scholar